Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2312004, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402422

RESUMO

Quantum anomalous Hall (QAH) insulators transport charge without resistance along topologically protected chiral 1D edge states. Yet, in magnetic topological insulators to date, topological protection is far from robust, with zero-magnetic field QAH effect only realized at temperatures an order of magnitude below the Néel temperature TN , though small magnetic fields can stabilize QAH effect. Understanding why topological protection breaks down is therefore essential to realizing QAH effect at higher temperatures. Here a scanning tunneling microscope is used to directly map the size of exchange gap (Eg,ex ) and its spatial fluctuation in the QAH insulator 5-layer MnBi2 Te4 . Long-range fluctuations of Eg,ex are observed, with values ranging between 0 (gapless) and 70 meV, appearing to be uncorrelated to individual surface point defects. The breakdown of topological protection is directly imaged, showing that the gapless edge state, the hallmark signature of a QAH insulator, hybridizes with extended gapless regions in the bulk. Finally, it is unambiguously demonstrated that the gapless regions originate from magnetic disorder, by demonstrating that a small magnetic field restores Eg,ex in these regions, explaining the recovery of topological protection in magnetic fields. The results indicate that overcoming magnetic disorder is the key to exploiting the unique properties of QAH insulators.

2.
ACS Nano ; 17(16): 15441-15448, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37552585

RESUMO

Emergent quantum phenomena in two-dimensional van der Waal (vdW) magnets are largely governed by the interplay between exchange and Coulomb interactions. The ability to precisely tune the Coulomb interaction enables the control of spin-correlated flat-band states, band gap, and unconventional magnetism in such strongly correlated materials. Here, we demonstrate a gate-tunable renormalization of spin-correlated flat-band states and bandgap in magnetic chromium tribromide (CrBr3) monolayers grown on graphene. Our gate-dependent scanning tunneling spectroscopy (STS) studies reveal that the interflat-band spacing and bandgap of CrBr3 can be continuously tuned by 120 and 240 meV, respectively, via electrostatic injection of carriers into the hybrid CrBr3/graphene system. This can be attributed to the self-screening of CrBr3 arising from the gate-induced carriers injected into CrBr3, which dominates over the weakened remote screening of the graphene substrate due to the decreased carrier density in graphene. Precise tuning of the spin-correlated flat-band states and bandgap in 2D magnets via electrostatic modulation of Coulomb interactions not only provides effective strategies for optimizing the spin transport channels but also may exert a crucial influence on the exchange energy and spin-wave gap, which could raise the critical temperature for magnetic order.

3.
ACS Nano ; 17(15): 14545-14554, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494826

RESUMO

Coherent optical manipulation of electronic bandstructures via Floquet Engineering is a promising means to control quantum systems on an ultrafast time scale. However, the ultrafast switching on/off of the driving field comes with questions regarding the limits of the Floquet formalism (which is defined for an infinite periodic drive) through the switching process and to what extent the transient changes can be driven adiabatically. Experimentally addressing these questions has been difficult, in large part due to the absence of an established technique to measure coherent dynamics through the duration of the pulse. Here, using multidimensional coherent spectroscopy we explicitly excite, control, and probe a coherent superposition of excitons in the K and K' valleys in monolayer WS2. With a circularly polarized, red-detuned pump pulse, the degeneracy of the K and K' excitons can be lifted, and the phase of the coherence rotated. We directly measure phase rotations greater than π during the 100 fs driving pulse and show that this can be described by a combination of the AC-Stark shift of excitons in one valley and the Bloch-Siegert shift of excitons in the opposite valley. Despite showing a smooth evolution of the phase that directly follows the intensity envelope of the nonresonant pump pulse, the process is not perfectly adiabatic. By measuring the magnitude of the macroscopic coherence as it evolves before, during, and after the nonresonant pump pulse we show that there is additional decoherence caused by power broadening in the presence of the nonresonant pump. This nonadiabaticity arises as a result of interactions with the otherwise adiabatic Floquet states and may be a problem for many applications, such as manipulating qubits in quantum information processing; however, these measurements also suggest ways such effects can be minimized or eliminated.

4.
ACS Nanosci Au ; 2(6): 450-485, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36573124

RESUMO

Since the isolation of graphene in 2004, two-dimensional (2D) materials research has rapidly evolved into an entire subdiscipline in the physical sciences with a wide range of emergent applications. The unique 2D structure offers an open canvas to tailor and functionalize 2D materials through layer number, defects, morphology, moiré pattern, strain, and other control knobs. Through this review, we aim to highlight the most recent discoveries in the following topics: theory-guided synthesis for enhanced control of 2D morphologies, quality, yield, as well as insights toward novel 2D materials; defect engineering to control and understand the role of various defects, including in situ and ex situ methods; and properties and applications that are related to moiré engineering, strain engineering, and artificial intelligence. Finally, we also provide our perspective on the challenges and opportunities in this fascinating field.

5.
Sci Robot ; 7(68): eabm4183, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35857532

RESUMO

A prerequisite for social coordination is bidirectional communication between teammates, each playing two roles simultaneously: as receptive listeners and expressive speakers. For robots working with humans in complex situations with multiple goals that differ in importance, failure to fulfill the expectation of either role could undermine group performance due to misalignment of values between humans and robots. Specifically, a robot needs to serve as an effective listener to infer human users' intents from instructions and feedback and as an expressive speaker to explain its decision processes to users. Here, we investigate how to foster effective bidirectional human-robot communications in the context of value alignment-collaborative robots and users form an aligned understanding of the importance of possible task goals. We propose an explainable artificial intelligence (XAI) system in which a group of robots predicts users' values by taking in situ feedback into consideration while communicating their decision processes to users through explanations. To learn from human feedback, our XAI system integrates a cooperative communication model for inferring human values associated with multiple desirable goals. To be interpretable to humans, the system simulates human mental dynamics and predicts optimal explanations using graphical models. We conducted psychological experiments to examine the core components of the proposed computational framework. Our results show that real-time human-robot mutual understanding in complex cooperative tasks is achievable with a learning model based on bidirectional communication. We believe that this interaction framework can shed light on bidirectional value alignment in communicative XAI systems and, more broadly, in future human-machine teaming systems.


Assuntos
Robótica , Inteligência Artificial , Comunicação , Retroalimentação , Humanos , Sistemas Homem-Máquina
6.
Adv Mater ; 34(21): e2107520, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35261089

RESUMO

Combining magnetism and nontrivial band topology gives rise to quantum anomalous Hall (QAH) insulators and exotic quantum phases such as the QAH effect where current flows without dissipation along quantized edge states. Inducing magnetic order in topological insulators via proximity to a magnetic material offers a promising pathway toward achieving the QAH effect at a high temperature for lossless transport applications. One promising architecture involves a sandwich structure comprising two single-septuple layers (1SL) of MnBi2 Te4 (a 2D ferromagnetic insulator) with ultrathin few quintuple layer (QL) Bi2 Te3 in the middle, and it is predicted to yield a robust QAH insulator phase with a large bandgap greater than 50 meV. Here, the growth of a 1SL MnBi2 Te4 /4QL Bi2 Te3 /1SL MnBi2 Te4 heterostructure via molecular beam epitaxy is demonstrated and the electronic structure probed using angle-resolved photoelectron spectroscopy. Strong hexagonally warped massive Dirac fermions and a bandgap of 75 ± 15 meV are observed. The magnetic origin of the gap is confirmed by the observation of the exchange-Rashba effect, as well as the vanishing bandgap above the Curie temperature, in agreement with density functional theory calculations. These findings provide insights into magnetic proximity effects in topological insulators and reveal a promising platform for realizing the QAH effect at elevated temperatures.

7.
ACS Appl Mater Interfaces ; 14(4): 6102-6108, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35050569

RESUMO

Understanding the air stability of MnBi2Te4 thin films is crucial for the development and long-term operation of electronic devices based on magnetic topological insulators. In the present work, we study MnBi2Te4 thin films upon exposure to the atmosphere using a combination of synchrotron-based photoelectron spectroscopy, room-temperature electrical transport, and atomic force microscopy to determine the oxidation process. After 2 days of air exposure, a 2 nm thick oxide passivates the surface, corresponding to the oxidation of only the top two surface layers, with the underlying layers preserved. This protective oxide layer results in samples that still exhibit metallic conduction even after several days of air exposure. Furthermore, the work function decreases from 4.4 eV for pristine MnBi2Te4 to 4.0 eV after the formation of the oxide, along with only a small shift in the core levels, indicating minimal doping as a result of air exposure. With the oxide confined to the top surface layers, and the underlying layers preserved, it may be possible to explore new avenues in how to handle, prepare, and passivate future MnBi2Te4 devices.

8.
J Phys Condens Matter ; 34(17)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35081526

RESUMO

Chalcogen vacancies in transition metal dichalcogenides are widely acknowledged as both donor dopants and as a source of disorder. The electronic structure of sulphur vacancies in MoS2however is still controversial, with discrepancies in the literature pertaining to the origin of the in-gap features observed via scanning tunneling spectroscopy (STS) on single sulphur vacancies. Here we use a combination of scanning tunnelling microscopy and STS to study embedded sulphur vacancies in bulk MoS2crystals. We observe spectroscopic features dispersing in real space and in energy, which we interpret as tip position- and bias-dependent ionization of the sulphur vacancy donor due to tip induced band bending. The observations indicate that care must be taken in interpreting defect spectra as reflecting in-gap density of states, and may explain discrepancies in the literature.

9.
ACS Nano ; 15(8): 13444-13452, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34387086

RESUMO

Intrinsic magnetic topological insulators offer low disorder and large magnetic band gaps for robust magnetic topological phases operating at higher temperatures. By controlling the layer thickness, emergent phenomena such as the quantum anomalous Hall (QAH) effect and axion insulator phases have been realized. These observations occur at temperatures significantly lower than the Néel temperature of bulk MnBi2Te4, and measurement of the magnetic energy gap at the Dirac point in ultrathin MnBi2Te4 has yet to be achieved. Critical to achieving the promise of this system is a direct measurement of the layer-dependent energy gap and verification of a temperature-dependent topological phase transition from a large band gap QAH insulator to a gapless TI paramagnetic phase. Here we utilize temperature-dependent angle-resolved photoemission spectroscopy to study epitaxial ultrathin MnBi2Te4. We directly observe a layer-dependent crossover from a 2D ferromagnetic insulator with a band gap greater than 780 meV in one septuple layer (1 SL) to a QAH insulator with a large energy gap (>70 meV) at 8 K in 3 and 5 SL MnBi2Te4. The QAH gap is confirmed to be magnetic in origin, as it becomes gapless with increasing temperature above 8 K.

10.
Adv Mater ; 33(33): e2007795, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34185344

RESUMO

Inducing long-range magnetic order in 3D topological insulators can gap the Dirac-like metallic surface states, leading to exotic new phases such as the quantum anomalous Hall effect or the axion insulator state. These magnetic topological phases can host robust, dissipationless charge and spin currents or unique magnetoelectric behavior, which can be exploited in low-energy electronics and spintronics applications. Although several different strategies have been successfully implemented to realize these states, to date these phenomena have been confined to temperatures below a few Kelvin. This review focuses on one strategy: inducing magnetic order in topological insulators by proximity of magnetic materials, which has the capability for room temperature operation, unlocking the potential of magnetic topological phases for applications. The unique advantages of this strategy, the important physical mechanisms facilitating magnetic proximity effect, and the recent progress to achieve, understand, and harness proximity-coupled magnetic order in topological insulators are discussed. Some emerging new phenomena and applications enabled by proximity coupling of magnetism and topological materials, such as skyrmions and the topological Hall effect, are also highlighted, and the authors conclude with an outlook on remaining challenges and opportunities in the field.

11.
Sci Adv ; 7(3)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523911

RESUMO

On-surface synthesis has revealed remarkable potential in the fabrication of atomically precise nanographenes. However, surface-assisted synthesis often involves multiple-step cascade reactions with competing pathways, leading to a limited yield of target nanographene products. Here, we devise a strategy for the ultrahigh-yield synthesis of circumcoronene molecules on Cu(111) via surface-assisted intramolecular dehydrogenation of the rationally designed precursor, followed by methyl radical-radical coupling and aromatization. An elegant electrostatic interaction between circumcoronenes and metallic surface drives their self-organization into an extended superlattice, as revealed by bond-resolved scanning probe microscopy measurements. Density functional theory and tight-binding calculations reveal that unique hexagonal zigzag topology of circumcoronenes, along with their periodic electrostatic landscape, confines two-dimensional electron gas in Cu(111) into a chiral electronic Kagome-honeycomb lattice with two emergent electronic flat bands. Our findings open up a new route for the high-yield fabrication of elusive nanographenes with zigzag topologies and their superlattices with possible nontrivial electronic properties.

12.
Adv Mater ; 33(11): e2005897, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33538071

RESUMO

Trisodium bismuthide (Na3 Bi) is the first experimentally verified topological Dirac semimetal, and is a 3D analogue of graphene hosting relativistic Dirac fermions. Its unconventional momentum-energy relationship is interesting from a fundamental perspective, yielding exciting physical properties such as chiral charge carriers, the chiral anomaly, and weak anti-localization. It also shows promise for realizing topological electronic devices such as topological transistors. Herein, an overview of the substantial progress achieved in the last few years on Na3 Bi is presented, with a focus on technologically relevant large-area thin films synthesized via molecular beam epitaxy. Key theoretical aspects underpinning the unique electronic properties of Na3 Bi are introduced. Next, the growth process on different substrates is reviewed. Spectroscopic and microscopic features are illustrated, and an analysis of semiclassical and quantum transport phenomena in different doping regimes is provided. The emergent properties arising from confinement in two dimensions, including thickness-dependent and electric-field-driven topological phase transitions, are addressed, with an outlook toward current challenges and expected future progress.

13.
ACS Appl Mater Interfaces ; 12(31): 35542-35546, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32805795

RESUMO

Na3Bi has attracted significant interest in both bulk form as a three-dimensional topological Dirac semimetal and ultrathin form as a wide-band gap two-dimensional topological insulator. Its extreme air sensitivity has limited experimental efforts on thin and ultrathin films grown via molecular beam epitaxy to ultrahigh vacuum environments. Here, we demonstrate air-stable Na3Bi thin films passivated with magnesium difluoride (MgF2) or silicon (Si) capping layers. Electrical measurements show that deposition of MgF2 or Si has minimal impact on the transport properties of Na3Bi while in ultrahigh vacuum. Importantly, the MgF2-passivated Na3Bi films are air-stable and remain metallic for over 100 h after exposure to air, as compared to near instantaneous degradation when they are unpassivated. Air stability enables transfer of films to a conventional high-magnetic field cryostat, enabling quantum transport measurements, which verify that the Dirac semimetal character of Na3Bi films is retained after air exposure.

14.
Nano Lett ; 20(9): 6306-6312, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32841034

RESUMO

A two-dimensional topological insulator (2DTI) has an insulating bulk and helical edges robust to nonmagnetic backscattering. While ballistic transport has been demonstrated in micron-scale 2DTIs, larger samples show significant backscattering and a nearly temperature-independent resistance of unclear origin. Spin polarization has been measured, however the degree of helicity is difficult to quantify. Here, we study 2DTI few-layer Na3Bi on insulating Al2O3. A nonlocal conductance measurement demonstrates edge conductance in the topological regime with an edge mean free path ∼100 nm. A perpendicular magnetic field suppresses spin-flip scattering in the helical edges, resulting in a giant negative magnetoresistance (GNMR) up to 80% at 0.9 T. Comparison to theory indicates >96% of scattering is helical spin scattering significantly exceeding the maximum (67%) expected for a nonhelical metal. GNMR, coupled with nonlocal measurements, thus provides an unambiguous experimental signature of helical edges that we expect to be generically useful in understanding 2DTIs.

15.
Crit Care Resusc ; 21(1): 45-52, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30857512

RESUMO

OBJECTIVE: Prognostication in patients with post-hypoxic brain injury remains difficult; yet, clinicians are commonly asked to guide decisions regarding withdrawal of life support. We aimed to assess whether electroencephalogram (EEG) is a useful tool in predicting neurological outcome in patients with post-hypoxic myoclonus (PHM). DESIGN AND SETTING: This study was conducted as part of an internal hospital audit assessing therapeutic hypothermia in patients with hypoxic cardiac arrest. PARTICIPANTS: We identified 20 patients with PHM and evaluated their initial routine EEG. MAIN OUTCOME MEASURES: Three blinded neurologists independently assessed EEGs and scored them using the standardised critical care EEG terminology from the American Clinical Neurophysiology Society (2012 version) and the EEG patterns identified by the Target Temperature Management (TTM) trial group. Glasgow Outcome Scale (GOS) scores were used to assess neurological outcome at 30 and 90 days. Mortality rates at these time points were also documented. RESULTS: We found that the majority of patients (18/20) with PHM had an initial EEG that was "highly malignant" or "malignant", but outcomes at 30 and 90 days were not universally fatal. Six patients were alive at 30 days, and five at 90 days. Of the latter, two patients had moderate disability (GOS score 4) and one improved from a GOS score of 3 to 5, with only low disability. Two patients with "benign" EEGs had unchanged GOS scores of 3 at 30 and 90 days, indicating severe disability. CONCLUSION: This study shows that PHM is associated with a poor but not universally fatal prognosis. Early EEG does not reliably distinguish between good and poor outcomes.


Assuntos
Eletroencefalografia/métodos , Parada Cardíaca , Hipotermia Induzida , Mioclonia , Escala de Resultado de Glasgow , Humanos
16.
Sci Robot ; 4(37)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33137717

RESUMO

The ability to provide comprehensive explanations of chosen actions is a hallmark of intelligence. Lack of this ability impedes the general acceptance of AI and robot systems in critical tasks. This paper examines what forms of explanations best foster human trust in machines and proposes a framework in which explanations are generated from both functional and mechanistic perspectives. The robot system learns from human demonstrations to open medicine bottles using (i) an embodied haptic prediction model to extract knowledge from sensory feedback, (ii) a stochastic grammar model induced to capture the compositional structure of a multistep task, and (iii) an improved Earley parsing algorithm to jointly leverage both the haptic and grammar models. The robot system not only shows the ability to learn from human demonstrators but also succeeds in opening new, unseen bottles. Using different forms of explanations generated by the robot system, we conducted a psychological experiment to examine what forms of explanations best foster human trust in the robot. We found that comprehensive and real-time visualizations of the robot's internal decisions were more effective in promoting human trust than explanations based on summary text descriptions. In addition, forms of explanation that are best suited to foster trust do not necessarily correspond to the model components contributing to the best task performance. This divergence shows a need for the robotics community to integrate model components to enhance both task execution and human trust in machines.

17.
Nature ; 564(7736): 390-394, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30532002

RESUMO

The electric-field-induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor1-4. In this scheme, 'on' is the ballistic flow of charge and spin along dissipationless edges of a two-dimensional quantum spin Hall insulator5-9, and 'off' is produced by applying an electric field that converts the exotic insulator to a conventional insulator with no conductive channels. Such a topological transistor is promising for low-energy logic circuits4, which would necessitate electric-field-switched materials with conventional and topological bandgaps much greater than the thermal energy at room temperature, substantially greater than proposed so far6-8. Topological Dirac semimetals are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases3,10-16. Here we use scanning tunnelling microscopy and spectroscopy and angle-resolved photoelectron spectroscopy to show that mono- and bilayer films of the topological Dirac semimetal3,17 Na3Bi are two-dimensional topological insulators with bulk bandgaps greater than 300 millielectronvolts owing to quantum confinement in the absence of electric field. On application of electric field by doping with potassium or by close approach of the scanning tunnelling microscope tip, the Stark effect completely closes the bandgap and re-opens it as a conventional gap of 90 millielectronvolts. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy at room temperature (25 millielectronvolts), suggest that ultrathin Na3Bi is suitable for room-temperature topological transistor operation.

18.
Nat Commun ; 9(1): 3211, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097562

RESUMO

Coordination chemistry relies on harnessing active metal sites within organic matrices. Polynuclear complexes-where organic ligands bind to several metal atoms-are relevant due to their electronic/magnetic properties and potential for functional reactivity pathways. However, their synthesis remains challenging; few geometries and configurations have been achieved. Here, we synthesise-via supramolecular chemistry on a noble metal surface-one-dimensional metal-organic nanostructures composed of terpyridine (tpy)-based molecules coordinated with well-defined polynuclear iron clusters. Combining low-temperature scanning probe microscopy and density functional theory, we demonstrate that the coordination motif consists of coplanar tpy's linked via a quasi-linear tri-iron node in a mixed (positive-)valence metal-metal bond configuration. This unusual linkage is stabilised by local accumulation of electrons between cations, ligand and surface. The latter, enabled by bottom-up on-surface synthesis, yields an electronic structure that hints at a chemically active polynuclear metal centre, paving the way for nanomaterials with novel catalytic/magnetic functionalities.

19.
Sci Adv ; 4(7): eaar7720, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30027116

RESUMO

Van der Waals (vdW) assembly of layered materials is a promising paradigm for creating electronic and optoelectronic devices with novel properties. Ferroelectricity in vdW layered materials could enable nonvolatile memory and low-power electronic and optoelectronic switches, but to date, few vdW ferroelectrics have been reported, and few in-plane vdW ferroelectrics are known. We report the discovery of in-plane ferroelectricity in a widely investigated vdW layered material, ß'-In2Se3. The in-plane ferroelectricity is strongly tied to the formation of one-dimensional superstructures aligning along one of the threefold rotational symmetric directions of the hexagonal lattice in the c plane. Surprisingly, the superstructures and ferroelectricity are stable to 200°C in both bulk and thin exfoliated layers of In2Se3. Because of the in-plane nature of ferroelectricity, the domains exhibit a strong linear dichroism, enabling novel polarization-dependent optical properties.

20.
Nano Lett ; 17(12): 7213-7217, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29110492

RESUMO

3D Dirac semimetals are an emerging class of materials that possess topological electronic states with a Dirac dispersion in their bulk. In nodal-line Dirac semimetals, the conductance and valence bands connect along a closed path in momentum space, leading to the prediction of pseudospin vortex rings and pseudospin skyrmions. Here, we use Fourier transform scanning tunneling spectroscopy (FT-STS) at 4.5 K to resolve quasiparticle interference (QPI) patterns at single defect centers on the surface of the line nodal semimetal zirconium silicon sulfide (ZrSiS). Our QPI measurements show pseudospin conservation at energies close to the line node. In addition, we determine the Fermi velocity to be ℏvF = 2.65 ± 0.10 eV Å in the Γ-M direction ∼300 meV above the Fermi energy EF and the line node to be ∼140 meV above EF. More importantly, we find that certain scatterers can introduce energy-dependent nonpreservation of pseudospin, giving rise to effective scattering between states with opposite pseudospin deep inside valence and conduction bands. Further investigations of quasiparticle interference at the atomic level will aid defect engineering at the synthesis level, needed for the development of lower-power electronics via dissipationless electronic transport in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...